\(\dfrac{x^2}{1+16x^4}\le\dfrac{x^2}{2\sqrt{16x^4}}=\dfrac{x^2}{2.4x^2}=\dfrac{1}{8}\)
\(\dfrac{y^2}{1+16y^4}\le\dfrac{y^2}{2\sqrt{16y^4}}=\dfrac{y^2}{2.4y^2}=\dfrac{1}{8}\)
Cộng theo vế suy ra đpcm
\(\dfrac{x^2}{1+16x^4}\le\dfrac{x^2}{2\sqrt{16x^4}}=\dfrac{x^2}{2.4x^2}=\dfrac{1}{8}\)
\(\dfrac{y^2}{1+16y^4}\le\dfrac{y^2}{2\sqrt{16y^4}}=\dfrac{y^2}{2.4y^2}=\dfrac{1}{8}\)
Cộng theo vế suy ra đpcm
Cho x>0, y>0. Chứng minh: (x+y).\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\ge\) 4
1. Giải các BPT
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b)\(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
c) (x+3)2\(\le\)x2-7
1. Tìm GTNN:
a)A = |x| + |1+x|
b) B = |2-x| + 3
2. Chứng minh
a) a4 +1 \(\ge\) a(a2 +1)
b) \(\dfrac{a^2}{a^4+1}\le\dfrac{1}{2}\)
3. Giải pt:
a) |-4x| + 3x = 1
b) |x-2|=|3x|
c) |x-2|=3x
cho x>0;y>0;\(x+y\le1\) chứng minh \(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge4\)
CM : \(\dfrac {{x}^{2}}{{y}^{2}}+\dfrac {{y}^{2}}{{x}^{2}}+4 >= 3(\dfrac {x}{y}+\dfrac {x}{y})\)
tìm các giá trị của x thỏa mãn cả 2 bất phương trình
\(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}\le x\) ( 1 )
\(2+\dfrac{3\left(x+1\right)}{3}< 3-\dfrac{x-1}{4}\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)
Giải PT:
a, \(\dfrac{x^2+x+1}{x^2+x+2}+\dfrac{x^2+x+2}{x^2+x+3}=\dfrac{7}{6}\)
b, \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
c, \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Help me!!! Mk cần gấp!!!