a) \(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2.4=25-8=17\)
b) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.4.5=125-60=65\)
c) \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2=\left(5^2-2.4\right)^2-2.4^2\)
\(=\left(25-8\right)^2-2.16=17^2-32=289-32=257\)
d) \(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)
\(=\left(x+y\right)^5-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x^3+y^3\right)+\left(2x^2y+2xy^2\right)\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-3xy\left(x+y\right)+\left(2xy\left(x+y\right)\right)\right)\)
\(=\left(5\right)^5-5.4\left(\left(\left(5^3-3.4.5\right)+\left(2.4.5\right)\right)\right)\)
\(=3125-20\left(125-65+40\right)\)
\(=3125-20\left(100\right)=3125-2000=1125\)
\(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2\cdot4=25-8=17\\ x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3\cdot4\cdot5=125-60=65\\ x^4+y^4 \\ =\left(x+y\right)^4-4xy\left(x^2+y^2\right)-6x^2y^2\\ =5^4-4\cdot4\left[\left(x+y\right)^2-2xy\right]-6\left(xy\right)^2\\ =5^4-4\cdot4\cdot\left(5^2-2\cdot4\right)-6\cdot4^2\\ =625-16\cdot\left(25-8\right)-6\cdot16\\ =625-16\cdot17-96\\ =625-272-96\\ =257\\ x^5+y^5\\ =\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\\ =5^5-5\cdot4\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-10\left(xy\right)^2\cdot5\\ =3125-20\left(5^3-3\cdot4\cdot5\right)-10\cdot4^2\cdot5\\ =3125-20\cdot\left(125-60\right)-10\cdot16\cdot5\\ =3125-20\cdot65-800\\ =3125-1300-800\\ =1025\)