\(M=x^3+y^3-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3x+10+3y\)
\(=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3x+10+3y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10\)
\(=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Ta có: x + y = 5
\(\Rightarrow\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy M = 100.