Vì x>8y>0 áp dụng BĐT Cauchy cho 3 số dương
\(P=x+\dfrac{1}{y\left(x-8y\right)}=\left(x-8y\right)+8y+\dfrac{1}{y\left(x-8y\right)}\ge3\sqrt[3]{\left(x-8y\right).8y.\dfrac{1}{y\left(x-8y\right)}}=3\sqrt[3]{8}=6\)
Đẳng thức xảy ra \(\Leftrightarrow x-8y=8y=\dfrac{1}{y\left(x-8y\right)}\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{4}\end{matrix}\right.\)
vì x>8y>0 nên x-8y>0
Ta có : P=\(x+\dfrac{1}{y\left(x-8y\right)}\)= x-8y+8y+ \(\dfrac{1}{y\left(x-8y\right)}\)
ÁP dụng BĐT côsy cho 3 số dương dạng a+b+c\(\ge\) 3\(\sqrt[3]{abc}\) ta đc:
P \(\ge\)3\(\sqrt[3]{\left(x-8y\right).8y.\dfrac{1}{y\left(x-8y\right)}}\)\(\ge\) 3.2=6
Vậy Pmin=6 khi đó dấu "=" xẫy ra khi : \(x-8y=8y=\dfrac{1}{y\left(x-8y\right)}\)
<=> \(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{4}\end{matrix}\right.\)