Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{4}{2y}=\dfrac{1^2}{x}+\dfrac{2^2}{2y}\)
\(\ge\dfrac{\left(1+2\right)^2}{x+2y}=\dfrac{3^2}{3}=3\)
Đẳng thức xảy ra khi \(x=y=1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{4}{2y}=\dfrac{1^2}{x}+\dfrac{2^2}{2y}\)
\(\ge\dfrac{\left(1+2\right)^2}{x+2y}=\dfrac{3^2}{3}=3\)
Đẳng thức xảy ra khi \(x=y=1\)
cho 3x^2+2y^2+2z^2+2yz=2018. tim min, max cua S=x+y+z
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\dfrac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\dfrac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho \(x;y>\dfrac{\sqrt{5}-1}{2}\) thỏa mãn \(x+y=xy\)
tìm min\(\dfrac{1}{x^2+x-1}+\dfrac{1}{y^2+y-1}\)
1. tim x biet :
a, (x-2)(x+3) > 2x\(^2\) -x -5
b, x( x-5) > x-4
2. cho 2 so x va y thoa man : x+y = 7 va xy=2 . khong tinh x va y , hay tinh gia tri cua bieu thuc A= x - y ( biet x< y)
Cho các số thực dương x,y thỏa mãn \(x+y>=3\). Chứng minh :\(x+y+\dfrac{1}{2x}+\dfrac{1}{2y}>=\dfrac{9}{2}\) Đẳng thức xảy ra khi nào?
Cho x + y \(\le\)1 .Tìm Min B = \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)
Cho 2 số thực x,y thỏa mãn :\(\left\{{}\begin{matrix}\sqrt[3]{x^3-7}+y^2-2y+3=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Tính giá trị cuả biểu thức: \(Q=x^{2018}+y^{2018}\)
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Tìm max hoặc min của biểu thức sau:
\(C=\sqrt{2x^2+y^2-4x+2y+3}+\sqrt{3x^2+y^2-6x-8y+19}\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{x^2-4x+29}}+\frac{1}{y}\sqrt{\frac{y-25}{y^2-100y+2501}}\)