Chứng minh rằng : \(\dfrac{x^8+y^8+z^8}{x^3 y^3 z^3}\) ≥ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \) với x, y ,z > 0 .
Cho x, y, z là ba số thwujc dương thỏa mãn xyz = 1. Chứng minh rằng \(x^3+y^3+z^3\ge x+y+z\)
cho x,y,z là các số thực thỏa mãn x+y+z=3
chứng minh rằng : (x-1)3 + (y-1)3 + (z-1)3 ≥ \(-\dfrac{3}{4}\)
Cho x,y,z > 0 . Chứng minh rằng \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)≥3
Cho x, y, z thỏa mãn: \(x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=\frac{1}{3}\)
Chứng minh rằng: x, y, z dương và x = y = z
ta có \(A=\dfrac{1}{1+\dfrac{bc}{a}}+\dfrac{1}{1+\dfrac{ca}{b}}+\dfrac{1}{1+\dfrac{ab}{c}}\)
đặt \(\sqrt{\dfrac{bc}{a}};\sqrt{\dfrac{ca}{b}};\sqrt{\dfrac{ab}{c}}=\left(x;y;z\right)\) =>xy+yz+zx=1
ta có A=\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\)
ta cần chứng minh \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{9}{4}\Leftrightarrow1-\dfrac{1}{x^2}+1-\dfrac{1}{1+y^2}+1-\dfrac{1}{z^2+1}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+1}+\dfrac{y^2}{y^2+1}+\dfrac{z^2}{z^2+1}\ge\dfrac{3}{4}\)
mà \(\dfrac{x^2}{x^2+1}+\dfrac{y^2}{y^2+1}+\dfrac{z^2}{z^2+1}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3}=\dfrac{x^2+y^2+z^2+2}{x^2+y^2+z^2+3}=1-\dfrac{1}{x^2+y^2+z^2+3}\ge\dfrac{3}{4}\)
=> BĐT cầnd chứng minh luôn đúng
Cho 3 số x, y, z khác 0 thỏa mãn 1/x+1/y+1/z=1. chứng minh rằng 1/x^4+1/y^4+1/z^4>=1/xyz
Cho x,y,z>0 thoã mãn : x2+y2+z2=3
Chứng minh rằng: \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{3}{2}\)
Chứng minh rằng :
Nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
Thì \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{Z^3}=\dfrac{1}{x^3+y^3+z^3}\)