Cho 3 số x, y, z khác 0 thỏa mãn 1/x+1/y+1/z=1. chứng minh rằng 1/x^4+1/y^4+1/z^4>=1/xyz
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Cho x, y, z thỏa mãn: \(x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=\frac{1}{3}\)
Chứng minh rằng: x, y, z dương và x = y = z
cho x,y,z là các số thực thỏa mãn x+y+z=3
chứng minh rằng : (x-1)3 + (y-1)3 + (z-1)3 ≥ \(-\dfrac{3}{4}\)
Cho 3 số thực dương x;y;z . Cmr: \(x^2.y^y.z^z\ge\left(xyz\right)\left(\dfrac{x+y+z}{3}\right)\)
Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
Cho x, y, z\(\le\) 1. Chứng minh rằng:
x(1-y^3)/y^3+y(1-z^3)/z^3+z(1-x^3)/x^3 \(\ge\) 0
cho 3 số x,y,z thỏa mãn điều kiện xyz=2014.chứng minh rằng biểu thức sao ko phụ thuộc vào các biến x,y,z:
\(\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)
Cho 3 số dương x, y, z thỏa mãn: x+y+z=2. CMR: \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge1\)