Ta có:
\(\left\{{}\begin{matrix}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\\2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\end{matrix}\right.\)
Cộng theo vế cá BĐT trên ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Rightarrow3\left[\left(x^2+y^2+z^2\right)+1\right]\ge12\)
\(\Rightarrow\left(x^2+y^2+z^2\right)+1\ge4\Rightarrow P\ge3\)