Violympic toán 9

Khoa

Cho x, y, z > 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\). CMR:
\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{3}{4}\)

Trần Minh Hoàng
3 tháng 10 2020 lúc 18:39

Áp dụng BĐT Schwars và BĐT AM - GM:
\(\frac{x}{x^4+1+2xy}\le\frac{1}{4}x\left(\frac{1}{x^4+1}+\frac{1}{2xy}\right)=\frac{1}{4}\left(\frac{x}{x^4+1}+\frac{1}{2y}\right)\le\frac{1}{4}\left(\frac{x}{2x^2}+\frac{1}{2y}\right)=\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}\right)\).

Tương tự rồi cộng vế với vế ta được:

\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2z}+\frac{1}{2x}\right)=\frac{1}{4}.3=\frac{3}{4}\left(đpcm\right)\)

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 10 2020 lúc 18:40

Đặt vế trái là P

\(P\le\frac{x}{2x^2+2xy}+\frac{y}{2y^2+2yz}+\frac{z}{2z^2+2zx}=\frac{1}{2\left(x+y\right)}+\frac{1}{2\left(y+z\right)}+\frac{1}{2\left(z+x\right)}\)

\(P\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Luân Đào
Xem chi tiết
Nguyen Thi Thu Huyen
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
bach nhac lam
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Thị Lan
Xem chi tiết