Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luân Đào

Cho a,b,c > 0.

Chứng minh:

\(\frac{2xy}{z^2}+\frac{2yz}{x^2}+\frac{2zx}{y^2}-\frac{x}{y}-\frac{y}{x}-\frac{y}{z}-\frac{z}{y}-\frac{z}{x}-\frac{x}{z}\ge0\)

Nguyễn Việt Lâm
3 tháng 6 2019 lúc 18:48

Đặt \(\left\{{}\begin{matrix}\frac{x}{y}=a\\\frac{y}{z}=b\\\frac{z}{x}=c\end{matrix}\right.\) \(\Rightarrow abc=1\)

\(P=\frac{2b}{c}+\frac{2c}{a}+\frac{2a}{b}-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(P=2ab^2+2bc^2+2a^2c-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(ab^2+a\ge2ab\Rightarrow ab^2\ge2ab-a\) ; \(ab^2+\frac{1}{a}\ge2b\Rightarrow ab^2\ge2b-\frac{1}{a}\)

\(\Rightarrow2ab^2\ge2ab+2b-a-\frac{1}{a}\)

Tương tự và cộng lại:

\(\Rightarrow P\ge2\left(ab+ac+bc\right)+2\left(a+b+c\right)-2\left(a+b+c\right)-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{2\left(ab+ac+bc\right)}{abc}-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)


Các câu hỏi tương tự
Nguyễn Thị Lan
Xem chi tiết
Nguyen Thi Thu Huyen
Xem chi tiết
Khoa
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
bach nhac lam
Xem chi tiết