Áp dụng BĐT côsi cho 2 số không âm:
x2+y2\(\ge\)2xy
<=>2x2+2y2\(\ge\)4xy
Dấu "=" xảy ra khi và chỉ khi x=y
x2+4\(\ge\)4x
Dấu "=" xảy ra khi và chỉ khi x=2
y2+4\(\ge\)4y
Dấu "=" xảy ra khi và chỉ khi y=2
=>3x2+3y2+8\(\ge\)4(x+y+xy)=4.8=32
=>P=x2+y2\(\ge\)8
=>Min P=8 xảy ra khi \(\left\{{}\begin{matrix}x=y\\y=2\\x=2\end{matrix}\right.\)<=>x=y=2
Vậy...