Lời giải:
\(x^6-y^6=(x^3-y^3)(x^3+y^3)=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)\)
\(=(x-y)[(x-y)^2+3xy](x+y)[(x-y)^2+xy]\)
\(=3[3^2+3(-2)](x+y)[3^2+(-2)]=63(x+y)\)
Lại có:
\((x+y)^2=(x-y)^2+4xy=3^2+4(-2)=1\)
\(\Rightarrow x+y=\pm 1\Rightarrow x^6-y^6=\pm 63\)