Ta có: \(x^3-y^3+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)^2\)
Ta có: x3−y3+xy(x−y)x3−y3+xy(x−y)
=(x−y)(x2+xy+y2)+xy(x−y)=(x−y)(x2+xy+y2)+xy(x−y)
=(x−y)(x2+2xy+y2)=(x−y)(x2+2xy+y2)
=(x−y)⋅(x+y)2
nhims tick nha