Ta có tứ giác ABCD có 2 đường chéo AC ⊥ BD là hình vuông
=> AB=BC=CD=DA
áp dụng PITAGO vào tam giác tuỳ thích(tam giác vuông lớn)
AB2+DC2=AB2+DA2=BD2=(2R)2=4R2
Ta có tứ giác ABCD có 2 đường chéo AC ⊥ BD là hình vuông
=> AB=BC=CD=DA
áp dụng PITAGO vào tam giác tuỳ thích(tam giác vuông lớn)
AB2+DC2=AB2+DA2=BD2=(2R)2=4R2
Cho hình thang ABCD nội tiếp đường tròn ( O) có đường chéo AC, BD cắt nhau ở E, các cạnh bên AD, BC kéo dài cắt nhau ở F. Chứng minh rằng: a, Tứ giác ABCD là hình thang cân b, FA.FD=FB.FC c, Góc AED = góc AOD d, Tứ giác AOCF nội tiếp
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O), có các đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tứ giác ADHE
b) Chứng minh: tứ giác BEDC nội tiếp.
c) Chứng minh AH vuông góc BC
Cho tam giác ABC nhọn nội tiếp (O;R) AB < AC, các đường cao BD, CE
a, Chứng minh BEDC nội tiếp
b, Qua A vẽ tiếp tuyến xy với (O). Chứng minh xy // ED
c, Chứng minh góc EBD = góc ECD
Cho △ ABC (AB<AC) có 3 góc nhọn nội tiếp (O;R) . H là giao điểm của 3 đường cao AD,BE,CF của △ ABC
a)c/m AEHF nội tiếp; AEDB là các tứ giác nội tiếp
b) vẽ đường kính AK của (O)
C/m AB.AC=AK.AD
c) Chứng minh : OC vuông DE
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại I kẻ IE vuông góc với ad A : CM DC ie nội tiếp B: ca là tia phân giác của góc bce C: gọi K là tâm của đường tròn ngoại tiếp tam giác CIE,CM : kbd thẳng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) (AB < AC). Đường cao BE kéo dài cắt đường tròn tại K. Kẻ KD vuông góc với BC tại D. Qua E kẻ đường thẳng vuông góc với OA cắt AB tại H. Tia DE cắt AB tại I.
a, Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b, Chứng minh KB là tia phân giác của góc AKD
c, Chứng minh tứ giác CKIH là hình thanh
Cho tam giác MNC có ba góc nhọn ,MN>MC,nội tiếp đường tròn (O;R),hai đường cao MD,CF cắt nhau tại H.
a)CM tứ giác NDHF nội tiếp
b)Tia NH cắt MC tại E.Chứng minh HE.HN=HF.HC
c)Vẽ đường kính MK của (O).Chứng minh MK vuông góc với EF
Cần gấp phần c ạ;-;
Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất