Tứ giác ABCD có \(AB\perp CD\). Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC.
Chứng minh rằng EG = FH ?
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
Cho hcn ABCD gọi E,F,G,H lần lượt là tdiem của AB,BC,CD,AD. AC cắt BD tại O, cminh: a) HEFG là hình thoi. b) AC,BD,EG,HF đồng quy
Cho hình chữ nhật ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, AC, CD, DA.
a) Tứ giác EFGH là hình gì ? Vì sao ?
b) Chứng minh các đường thẳng AC, BD, EG, FH đồng quy.
Cho ∆ ABC cân tại A. Gọi K là trung điểm của AC, D là trung điểm của BC.
Chứng minh tứ giác ABDK là hình thang.
b.Gọi M là điểm đối xứng của D qua K. Chứng minh tứ giác AMCD là hình chữ nhật.
c.Từ D vẽ DE ⊥ AC tại E. Gọi G và H lần lượt là trung điểm của DE và EC.
Chứng minh AG ⊥ BE.
GIẢI CÂU C THÔI Ạ
Cho tứ giác ABCD có AC vuông góc với BD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, AC. CM : Tứ giác EFGH là hình chữ nhật.
Cho hình chữ nhật ABCD có AB = DC = 12cm; AD = BC = 7cm; P là điểm bên trong hình chữ nhật. Gọi E, F, G, H thoe thức tự là các điểm đối xứng của P qua AB, BC, CD và DA.
a) Chứng minh A, B, C, D lần lượt là trung điểm của các cạnh tứ giác EFGH
b) TÍnh tổng độ dài đường chéo EG và FH của tứ giác EFGH
Cho tam giác abc có góc a = 90° , đường cao ah . Gọi E,F là trung điểm của AB và AC . Lấy gau điểm I,K lần lượt đối xứng với H qua E và F (hay E và F là trung điểm của IH và IK) . Chứng minh rằng : a) Các tứ giác AHBI và AHCK là các hình chữ nhật b) góc EHF=90° c) Ba điểm I,A,K thẳng hàng
cho tam giác ABC nhọn (AB<AC) đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D
a, cm tứ giác AHCK là hình chữ nhật
b, Gọi I,E lần lượt là trung điểm của BC và AB cm tứ giác EDCI là hình bình hành
c, tứ giác EBHI là hình thang cân
d, AH cắt DE tại M, BM cắt HE tại N,AN cắt BC tại L. Gọi O là trung điểm của MI , B là điểm đối xứng của L qua N cm C,O,N thẳng hàng