Trong tam giác OBC, kẻ đường cao OH \(\Rightarrow BC\perp\left(AOH\right)\)
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\Rightarrow OH=\frac{OB.OC}{\sqrt{OB^2+OC^2}}=\frac{6a}{\sqrt{13}}\)
Trong tam giác vuông AOH, từ O kẻ \(OK\perp AH\Rightarrow OK\perp\left(ABC\right)\)
\(\frac{1}{OK^2}=\frac{1}{OH^2}+\frac{1}{OA^2}\Rightarrow OK=\frac{OA.OH}{\sqrt{OA^2+OH^2}}=\frac{3a\sqrt{14}}{7}\)