Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{3a^2+5ac}{3a^2-5ac}=\dfrac{3b^2k^2+5\cdot bk\cdot dk}{3b^2k^2-5\cdot bk\cdot dk}=\dfrac{3b^2k^2+5bdk^2}{3b^2k^2-5bdk^2}=\dfrac{3b^2+5bd}{3b^2-5bd}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{3a^2+5ac}{3a^2-5ac}=\dfrac{3b^2k^2+5\cdot bk\cdot dk}{3b^2k^2-5\cdot bk\cdot dk}=\dfrac{3b^2k^2+5bdk^2}{3b^2k^2-5bdk^2}=\dfrac{3b^2+5bd}{3b^2-5bd}\)
cho tỉ lệ thức\(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1 \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2 \(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2d}{3b-4d}\)
nhanh nha gấp lắm ạ
chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
thì\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
các số a,b,c,d thỏa mãn điều kiện \(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}va\alpha+b+c+d\ne0\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Bài 1 :
Tìm 3 phân số có tổng =ác tử của chúng tỉ lệ với 3,4,5 và các mẫu tương ứng của chúng tỉ lệ với 5,1,2
Bài 2 :
1) Tìm x,y,z biết : 3.(x-1)=2.(y-2) ; 5(y-2)=4.(z-3) và 2.x+3.y-z=79
2) Cho 3 số thực a,b,c khác 0, a+b+c khác 0. Thỏa mãn:
\(\dfrac{3a+b+c}{a}=\dfrac{a+3b+c}{b}=\dfrac{a+b+3c}{c}\)
Tính giá trị M = \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
Cho các số a, b, c, d thõa mản điều kiện:
\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}\) và \(a+b+c+d\ne0\)
CMR: a = b = c = d
Tìm a,b,c biết:
a. \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\); \(\dfrac{b}{5}\)=\(\dfrac{c}{4} \) và a-b+c=-49
b. 3a=2b; 5b=7c và 3a+5b-7c=60
c. \(\dfrac{a}{b}\)=\(\dfrac{8}{5}\), \(\dfrac{b}{3}=\dfrac{c}{5}\)và a+b+c=61
d.\(\dfrac{a}{3}=\dfrac{b}4, \dfrac{b}4=\dfrac{c}5\)và 2a-3b+c=6
e.\(\dfrac{a}2=\dfrac{b}3, \dfrac{b}4=\dfrac{c}5 và a^{2}-b^2=-16\)
Cho \(\dfrac{b+c-3a}{a}=\dfrac{a+c-3b}{b}=\dfrac{a+b-3c}{c}\)
Tính: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)