\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x+cot^2x-2=9\Rightarrow tan^2x+cot^2x=11\)
\(tan^2x+cot^2x+2=13\Rightarrow\left(tanx+cotx\right)^2=13\Rightarrow tanx+cotx=\pm\sqrt{13}\)
\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)
\(=\left(tan^2x+cot^2x\right)\left(tanx-cotx\right)\left(tanx+cotx\right)\)
\(=11.3.\left(\pm\sqrt{13}\right)=\pm33\sqrt{13}\)