Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=15, AC= 20cm.
a) Tính BC, AH.
b) Trên đonạ HC lấy D sao cho HD=HB. Tính tan góc ADH và chứng minh: HD.HC=HA^2
c) Trên tia AH lấy điểm E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh HF vuông góc FO.
d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M. Chứng minh: AB/AM +AD/AS = AE/AK
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
bài 1. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và AH là đường cao
a/ Tính HB,HC
b/ Gọi E,F lần lượt là hình chiếu của H trên AC, AB, CMR: AF XAB=AE X AC; AH mủ 3= BF x CE x BC
c/ tính EF
d/ Gọi AD là phân giác góc BAC, D thuộc BC. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại B, có AB=15cm, AC= 25cm, kẻ đường cao BH
a/ Tính AH, HC, BC
b/ Gọi E,F lần lượt là hình chiếu của H trên AB, BC. tứ giác BEHF là hình gì? vì sao
c/ Gọi O là giao điểm BH và EF. CMR HA X HC= 4BO bình phương và BE X BA= BF X BC
d/ CMR BEF=BCAe/ gọi M là trung điểm AC. CMR: BM vuông góc EF
giúp mình nha các bạn, làm đầy đủ giúp mình ạ mình cảm ơn mình cần gấp lắm ạ
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.
Cho △ABC vuông tại A. biết AB = 3 cm, BC = 5 cm.
a) Giải △ABC vuông (số đo góc làm tròn đến độ)
b) Từ B kẻ đường thắng vuông góc với BC, đường thẳng này cắt AC tại D. Tính AD, BD.
c) Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD=BE.BC
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC