a: Xét ΔMNP có \(\widehat{N}=\widehat{P}\)
nên ΔMNP cân tại M
hay MN=MP
b: Ta có: ΔMNP cân tại M
mà MD là đường cao
nên MD là đường phân giác
a: Xét ΔMNP có \(\widehat{N}=\widehat{P}\)
nên ΔMNP cân tại M
hay MN=MP
b: Ta có: ΔMNP cân tại M
mà MD là đường cao
nên MD là đường phân giác
cho tam giác MNP có MN=MP. Gọi I là trung điểm của NP
a) CMR; tam giác MNI= MPI
b) CMR; MI là tia phân giác của MNP
c) CMR; MI vuông góc với NP
cho góc xAy khác góc bẹt trên tia Ax lấy điểm M,N (AM<AN) trên tia Ay lấy điểm E,D sao cho AM=AE, AN=AD I là giao điểm của MD và EN Chứng minh rằng MD=EN, Tam giác INM=tam giác IDE, AI là phân giác góc xAy, AI vuông góc với NB
Bài 1: Cho góc nhọn xOy. Gọi C là một điểm thuộc tia phân giác của góc xOy, kẻ CA vuông
góc với Ox (A Ox), kẻ CB vuông góc với Oy (B Oy).
a) Chứng minh: CA = CB và tam giác OAB là tam giác cân.
b) Chứng minh OC vuông góc với AB
c) Gọi D là giao điểm của BC và Ox, E là giao điểm của AC và Oy. So sánh các độ dài CD
và CE.
d) Cho biết OC = 13cm, OA = 12cm. Tính độ dài AC.
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC các tam giác vuông tại A là ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng :
a) DM = AH
b) MN đi qua trung điểm của DE
Cho tam giác ABC cân tại A. Tia Ax vuông góc với BC tại H.
a, Chứng minh : AH là tia phân giác của góc BAC.
b, Từ H lần lượt kẻ các tia vuông góc với AB tại E, với AC tại F. Chứng minh : AE = AF.
Giúp với ạ:D
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC. Chứng minh rằng AB = BE ?
Cho tam giác ABC vuông tại A ,góc ABC bằng 50 Độ a Tính góc ACB b Kẻ tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E Sao cho BA=BE.Chứng minh tam giác BAD =tam giác BED từ đó suy ra DE vuông góc với BC c Gọi M Là giao điểm của AB và PE CMR: DM=DC
cho góc xBy khác góc bẹt trên tia Bx lần lượt lấy các điểm A,C trên tia By lần lượt lấy các điểm D,E sao cho BA=BD, AC=DE M là giao điểm của AE và CO chứng minh AE=CD, MA=MD, BM là phân giác góc xBy, BM vuông góc với CE