Bài 3: Góc nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB.

a) Hỏi tam giác MBD là tam giác gì ?

b) So sánh tam giác BDA và BMC

c) Chứng minh rằng MA = MB + MC

Nguyen Thuy Hoa
8 tháng 6 2017 lúc 16:38

Góc nội tiếp

Hồ Đại Việt
11 tháng 2 2019 lúc 21:25

a ) Ta có BM=MD (gt)

=> \(\Delta\)MBD cân tại M

Mặt khác \(\widehat{AMB}=\widehat{ACB}\) ( Hai góc nội tiếp chắn cung AB)

\(\widehat{ACB}=60^0\)( tam giác ABC đều)

Suy ra \(\widehat{AMB}=60^0hay\widehat{DMB}=60^0\)

Vậy \(\Delta MBD\) đều

b) Ta có \(\Delta MBD\) đều ( CMT)

Suy ra : \(\widehat{DMB}=\widehat{DBC}+\widehat{CBM}=60^0\)(1)

Lại có : tam giác ABC đều (gt)

Suy ra : \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=60^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{MBC}\)

Xét hai tam giác ABD và CBM ta có

BC=BA (gt)

\(\widehat{ABD}=\widehat{MBC}\left(cmt\right)\)

BD=BM( tam giác MBD đều)

=> \(\Delta ABD=\Delta CBM\left(c.g.c\right)\)

c)\(\Delta ABD=\Delta CBM\left(cmt\right)\)

SUy ra AD=CM

mà AM=AD+DM

SUy ra MA=MC+MD


Các câu hỏi tương tự
vi lê
Xem chi tiết
Đỗ Đàm Phi Long
Xem chi tiết
Trần Mạnh Hòa
Xem chi tiết
vi lê
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Xuân Huy
Xem chi tiết
Võ Thị Hiền Luân
Xem chi tiết
Lan Nguyễn
Xem chi tiết
illumina
Xem chi tiết