Tâm O của đường tròn nội tiếp tam giác đều cũng là giao điểm ba đường trung tuyến, ba đường cao.
Do đó đường cao h=AE=3.OE=3cm.
Trong tam giác đều, h = a√3/2 (a là độ dài mỗi cạnh).
Suy ra Do đó diện tích tam giác ABC là
Ta chọn (D).
Tâm O của đường tròn nội tiếp tam giác đều cũng là giao điểm ba đường trung tuyến, ba đường cao.
Do đó đường cao h=AE=3.OE=3cm.
Trong tam giác đều, h = a√3/2 (a là độ dài mỗi cạnh).
Suy ra Do đó diện tích tam giác ABC là
Ta chọn (D).
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)
Độ dài mỗi cạnh của tam giác đều ngoại tiếp đường tròn (O; r) bằng :
(A) \(r\sqrt{3}\) (B) \(2r\sqrt{3}\) (C) \(4r\) (D) \(2r\)
Hãy chọn phương án đúng ?
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng :
\(AB+AC=2\left(R+r\right)\)
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)
Tính diện tích tam giác đều ABC ngoại tiếp đường tròn (I; r) ?
Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E
a) Tứ giác ADOE là hình gì ? Vì sao ?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm ?
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm).
a. CM : AOB là nửa tam giác đều
b. Tính các cạnh của tam giác ABC
c. :Đường thẳng qua O và vuông góc với OB cắt AC tại K. CM ; AKO cân
d: gọi I là trung điểm của đoạn thẳng OA . CM đường thẳng BC cắt tiếp tuyến của (O) . tính IK theo R
Chứng minh rằng nếu tam giác ABC có chu vi 2p, bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức :
\(S=p.r\)
Cho tam giác ABC có AB = 5cm, AC = 7cm, BC = 6cm ngoại tiếp đường tròn (O). Đường tròn (O1) bằng tiếp góc A tiếp xúc với cạnh BC ở D, tiếp xúc với phần kéo dài của các cạnh AB, AC lần lượt ở E và F.
a) Chứng minh ba điểm A, O, O1, thẳng hàng
b) Tính độ dài các đoạn AE, AF. BE, CF