Cho tam giác ABC có trọng tâm G, H là điểm đối xứng với B qua G. M là trung điểm BC, biểu diễn \(\overrightarrow{MH}=m\overrightarrow{AB}+n\overrightarrow{AC}\) thì m = ...
Cho tứ giác ABCD.Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và M là 1 điểm tùy ý.Chứng minh:
a,\(\overrightarrow{AF}+\overrightarrow{BG}+\overrightarrow{CH}+\overrightarrow{DE}=\overrightarrow{0}\)
b,\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{ME}+\overrightarrow{MF}+\overrightarrow{MG}+\overrightarrow{MH}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AK}\) (K là trung điểm FH)
Cho tam giác ABC có G là trọng tâm, E thuộc cạnh AC sao cho : \(\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{EC}=\dfrac{2}{5}\overrightarrow{AC}\) , D đối xứng A qua B
a) Xác định và dựng điểm E
b) Chứng minh rằng : \(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
c) Phân tích vectơ \(\overrightarrow{DG}\), \(\overrightarrow{DE}\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\). Chứng minh ba điểm D, G, E thẳng hàng
1. cho tam giác ABC. gọi I là trung điểm BC, P là điểm đối xứng với A qua B; R là điểm trên cạnh AC sao cho \(AR=\frac{2}{5}AC\) . gọi G là trọng tâm tam giác ABI. CMR P,G,R thẳng hàng
2. cho hbh ABCD. gọi I là trung điểm CD, G là trọng tâm tam giác BCI. đặt \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AD}\) . Phân tích \(\overrightarrow{AG}\) theo \(\overrightarrow{AB,}\overrightarrow{AD}\)
Bài 1: Cho tam giác ABC; M là trung điểm AB; N thuộc AC sao cho NC = 2NA. Xác định K, D sao cho:
a. 3\(\overrightarrow{AB}\) + 2\(\overrightarrow{AC}\) - 12 \(\overrightarrow{AK}\) = \(\overrightarrow{0}\)
b. \(3\)\(\overrightarrow{AB}+4\overrightarrow{AC}-12\overrightarrow{KD}=\overrightarrow{0}\)
Bài 2: Cho tứ giác ABCD. Xác định G sao cho: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
Chứng minh G là duy nhất
Cho tam giác ABC có trọng tâm G và K đối xứng với B qua G. Biết \(\overrightarrow{AK}=x\overrightarrow{AB}+y\overrightarrow{AC}\) thì 3x+3y=...
gọi G là trọng tâm của tam giác ABC . gọi I, J thỏa \(\overrightarrow{IA}=2\overrightarrow{IB}\) , \(3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IJ}\) theo \(\overrightarrow{c}=\overrightarrow{AB}\), \(\overrightarrow{b}=\overrightarrow{AC}\)
b, chứng minh rằng IJ qua G
cho tam giác ABC, M,N lần lượt là tâm của AB, AC .CMR
a,\(3\overrightarrow{AC}+4\overrightarrow{CM}+2\overrightarrow{BN}=\overrightarrow{0}\)
b, \(3\overrightarrow{MN}-\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho tam giác ABC có trọng tâm G và K đối xứng với A qua G. Biểu diễn \(\overrightarrow{AK}=x\overrightarrow{AB}+y\overrightarrow{AC}\) thì 6x+6y=...