a.)
\(\Delta HBA\)~\(\Delta ABC\) (\( \hat{B}\) chung)
\(\Delta HAC\)~\(\Delta ABC\) ( \( \hat{C}\) chung)
=> \(\Delta HAC\)~\(\Delta HBC\)
b.)
Áp dụng định lý py ta go vào tam giác vuông AHB ta có:
BH2 = AB2 - AH2 = 152 - 122 = 81
=> BH = \(\sqrt{81}=9cm\)
Tam giác HAC ~ tam giác HBC
=> \(\dfrac{BH}{BA}=\dfrac{AH}{AC}=>AC=\dfrac{15.12}{9}=20cm\)
Áp dụng định lý py-ta-go vào tam giác vuông HAC
ta có: HC2 = AC2 - AH2 = 202 - 122 =256
=> HC = \(\sqrt{257}=16cm\)