Cho tam giác ABC vuông tại A và đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH= 4cm CH = 9cm . a) tính DE b) CM: AD.AB=AC.AE c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Cm M là trung điểm của BH và N là trung điểm của CH. d) Tính diện tích tứ giác DEMN Mn giải hộ em câu c và d với.
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)