Cho tam giác ABC vuông tại A và đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH= 4cm CH = 9cm . a) tính DE b) CM: AD.AB=AC.AE c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Cm M là trung điểm của BH và N là trung điểm của CH. d) Tính diện tích tứ giác DEMN Mn giải hộ em câu c và d với.
Cho hình thang vuông ABCD vuông ở A và D có đáy AB = 7 cm CD = 4 cm AD = 4 cm. a) Tính cạnh bên BC. b) Trên AD lấy E sao cho CE = BC. Chứng minh EC vuông góc với BC và tính diện tích tứ giác ABCE. c) Hai đường thẳng AD và BC cắt nhau tại S tính SC. d) Tính các góc B và C của hình thang. Giải giúp e bài trên với ạ.
Cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền BC thành 2 đoạn thẳng BH=4cm, HC=9cm. Gọi M, N là hình chiếu của H trên AB, AC. Giả sử độ dài cạnh BC=a cm không đổi. Tam giác ABC cần thêm điều kiện gì để tứ giác AMHN có diện tích lớn nhất. Tìm giá trị lớn nhất đó.
Bài 3:
a) Giải hệ phương trình: \(\sqrt{x}+2\sqrt{y-1}=5\)
\(4\sqrt{x}-\sqrt{y-1}=2\)
b) Xác định hàm số bậc nhất thỏa mãn điều kiện: Đồ thị hàm số đi qua điểm M( 2;9) và cắt đường thẳng (d) : 3x - 5y=1 tại điểm có hoành độ bằng 2.
Bài 4: Cho tam giác ABC có đường phân giác AD. Vẽ đường tròn (O) đi qua hai điểm A, D và tiếp xúc với BC tại D. Đường tròn này cắt AB, AC lần lượt tại E và F. Chứng minh:
a) EF / / BC;
b) AD2=AE.AC ;
c) AE.AC= AB.AF.
cho nửa (0;R) , đg kính AB , bán kính OC⊥AB , M ∈ (O) ( M≠A , M≠B) , tiếp tuyến của O tại M cắt OC tại D, cắt tiếp tuyến tại A ở E , AD cắt BD tại F . C/m AE.EF =\(R^2\)
1/Chu vi hình tròn có bán kính 5 cm là :
A. 2,5π cm
B. 5π cm
C. 2π cm
D. 10π cm
2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :
A.4π/5 dm2
B. 8π/5 dm2
C. 2π/5 dm
D. 2π/5 dm2
3/ Khẳng định nào sau đây là khẳng định đúng :
A. Hai cung có số đo = nhau thì = nhau
B. Góc nội tiếp chắn nửa đường tròn là góc vuông
C. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cung
D. Tứ giác có tổng hai góc bằng 180° thì nội tiếp được đường tròn
4/ Cho đường tròn tâm O, có đường kính AB vuông góc với dây CD tại E. Khẳng định nào sau đây sai :
A. AC>AD
B. CE>ED
C. cung AC > cung AD
D. cung BC > cung BD
5/ Trên đường tròn tâm O lấy hai điểm A, B sao cho góc AOB=60°. Số đo cung nhỏ AB là :
A. 120°
B. 300°
C. 30°
D. 60°
6/ Bán kính của đường tròn có diện tích 9π (cm2) là :
A. 9 cm
B. 3 cm
C. 6 cm
D. 4.5 cm
7/ Tìm hai số tự nhiên biết tổng của hai số tự nhiên bằng 2017, nếu lấy số lớn chia cho số nhỏ thì được thương là 117 dư 11. Gọi x,y là hai số tự nhiên cần tìm ( x>y ) . Khi đó ta lập được hệ pt nào sau đây
A.{x+y =2017
x=117y+11
B. {x+ y = 2017
y=117x +11
C. {x+y=2017
x+117y= 11
D. {x+y=2017
x=117y-11
8/ Cho pt ẩn x : x2 + ( m+1 )x +m = 0 ( m là tham số ). ĐK của m để pt có nghiệm là :
A. với m>=0
B. với mọi giá trị của m
C. với m=0
D. với m>0
9/ Pt 5x2 -15x +10 =0 có nghiệm là :
A. S=15
B. S=10
C. S=3
D. S= -3
10/ Độ dài đường tròn tâm O bán kính 3 cm là bao nhiêu ?
A. 9π ( cm )
B. 6π ( cm )
C. 9π ( cm2 )
D. 6π ( cm2 )
11/ Điểm nào sau đây thuộc đồ thị hàm số x=-2
A. M(2;-4)
B. P (1;1 )
C. Q ( -4;2 )
D. N (2;4 )
12/ Nghiệm của hệ pt {2x+y=2 là ?
x - y=4
A. ( -2;2 )
B. ( 1;-5 )
C. ( 3; -1 )
D. ( 2; -2 )
13/ Hệ pt 2x-3y=m-1
4x+my=-14
A. m=1
B. m=-1
C. m= 6
D. m=-6
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm)
Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1
Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2
Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)
Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)
Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d)
a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy
b.Tính diện tích tam giác AOB
HELP!!
1. Giải phương trình: \(x^4\) + 3\(x^2\) - 4 = 0
2. Cho ΔABC có 3 góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.
a, Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.
b, Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.
c, Chứng minh rằng: OA ⊥ EF.
3. Tìm giá trị nhỏ nhất của biểu thức:
P = \(x^2\) - \(x\sqrt{y}\) + x + y - \(\sqrt{y}\) + 1
1, cho biết a = 2+\(\sqrt{3}\) và b = 2-\(\sqrt{3}\). Tính giá trị biểu thức P = a + b - ab
2, Cho biểu thức P= (\(\frac{1}{x-\sqrt{x}}\) + \(\frac{1}{\sqrt{x}-1}\)) : \(\frac{\sqrt{x}}{x-2\sqrt{x}+1}\) (với x>0; x ≠1)
a, Rút gọn biểu thức P
b, Tìm các giá trị của x để P > \(\frac{1}{2}\)
3, Cho đường tròn tâm O, đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:
a, BEFI là tứ giác nội tiếp đường tròn
b, AE.AF = \(AC^2\)
giúp mình với!!!!!!!!