Xét ΔAHC vuông tại H có
\(AC^2=AH^2+HC^2\)
nên HC=32(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
hay HB=18(cm)
Ta có: BC=HB+HC
nên BC=50(cm)
Xét ΔABH vuông tại H có
\(AB^2=BH^2+AH^2\)
hay AB=30(cm)
Xét ΔAHC vuông tại H có
\(AC^2=AH^2+HC^2\)
nên HC=32(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
hay HB=18(cm)
Ta có: BC=HB+HC
nên BC=50(cm)
Xét ΔABH vuông tại H có
\(AB^2=BH^2+AH^2\)
hay AB=30(cm)
Cho tam giác ABC vuông tại A đường cao AH AH=9cm AC=16cm a) tính các góc còn lại trong tam giác b)viết tỉ số lượng giác của góc B c) tính góc C
Cho ∆ABC vuông tại A có đg cao AH. Trong các đoạn thẳng sau:AB,AC,BC,AH,BH,HC, hãy tính các đoạn thẳng còn lại nếu biết: a)AB=6cm,BC=10cm b)AC=20cm,BC=25cm c)AB=12cm,AC=16cm d)BH=9cm,HC=6cm
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Cho tam giác ABC vuông tại A có AB = 4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D Cho tam giác ABC vuông tại A có AB=4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D. a) Tính độ dài đoạn thẳng AH b) Chứng minh BD là tiếp tuyến của đường tròn (C) c) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt tại P,Q. Chứng minh EF bình phương =4PE.QF
Cho tam giác abc vuông tại A, đường cao AH. Biết AB=9cm, BC= 15cm. Tính độ dài AH, AC
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=8cm, BH=2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH b) Trên cạnh AC lấy điểm K (K khác A, K khác C), gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC từ đó suy ra AB = BC. sin góc BDH
cho ΔABc vuông tại A có đường cao AH. Hãy tính độ đài các đoạn thẳng BH,CH,AH,AC nếu biết AB=6cm,BC=10
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E.
a)Chứng minh rằng: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 .
c) Chứng minh rằng: CE//AD