Cho tam giác ABC vuông tại A , đường caoAH.
a) C/m rằng : ΔABC đồng dạng với ΔHBA. từ đó suy ra AB2 =BH . BC
b) C/m rằng : ΔHBA đồng dạng với ΔHCA và AH2 =BH . HC
c) Trên tia HA lấy điểm D , E sao cho D là trung điểm của AH , A là trung điểm của HE. Chứng minh rằng D là trực tâm của Δ BCE
cho tam giác abc vuông tại A có đường cao AH. Trên tia HA lấy điểm D, E sao cho D là trung điểm AH, A là trung điểm HE. Chứng minh D là trực tâm của tam giác BCE
Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)
Cho tam giác ABC vuông tại A, AH là đường cao. D, E lần lượt là trung điểm của các đoạn thẳng AB, AH. Đường thẳng vuông góc AB taị D cắt CE ở F. Chứng minh rằng tam giác BCF vuông
Cho ΔABC vuông ở A. Điểm H là trung điểm của BC.Kẻ HD⊥AB và HE⊥AC (D ϵ AB, E ϵ AC)
a)Chứng minh tứ giác AEHD là hình chữ nhật.
b)Tính SAEHD biết AE=3cm, AH =5cm
c)Gọi P là điểm đối xứng của H qua AB. Chứng minh AH//BP
d)Trên tia đối của EH lấy Q sao cho QE=EH. Chứng minh A là trung điểm của đoạn thẳng PQ
Cho ΔABC vuông tại A có đường cao AH, M là trung điểm của BC. Trên tia đối của tia AB lấy điểm D sao cho AD=AC. Trên tia đối của tia AC lấy điểm E sao cho AE=AB. Chứng minh rằng:
a) AM ⊥ DE
b) AH đi qua trung điểm của DE
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)