Cho tam giác ABC vuông tại C, đường cao CK.
a) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC.
Chứng minh CB. CH= CA. CI
b) Gọi M là chân đường vuông góc kẻ từ K xuống IH
Chứng minh \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
c) Chứng minh \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
Cho hình vuông ABCD . Lấy I thuộc BC.
Qua A kẻ đường thẳng vuông góc với AI cắt DC tại N
AI cắt đường thẳng DC tại M
a,CM : tam giác ANI cân
b,CM : AI\(\cdot\)AM=AB\(\cdot\)NM
c,CM : Khi điểm I thay đổi trên BC thì \(\dfrac{1}{AI^2}+\dfrac{1}{AM^2}\) không đổi
Cho tam giác ABC vuông tại A, đường cao AH. E, F lần lượt là hình chiếu của H trên AB, AC. Gọi M là trung điểm BC. Chứng minh \(S_{AEMF}=\dfrac{1}{2}S_{ABC}\)
Cho tam giác ABC (AB<AC) có đường cao AH và đường phân giác AD. Trên cạnh AC, lấy 1 điểm E sao cho AE=AB. Nối BE cắt AH tại I.
a) Chứng minh \(\dfrac{HB}{HC}=\dfrac{IB^2}{IE^2}\)
b) Cho DB= 15cm, DC=20cm. Tính chu vi và diện tích của tứ giác AEDI
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
a. AB = a, AH = \(\dfrac{a\sqrt{3}}{2}\)
b. BC = 2a, HB = \(\dfrac{1}{4}BC\)
c. AB = a, CH = \(\dfrac{3}{2}a\)
d. CA = \(a\sqrt{3}\), AH = \(\dfrac{a\sqrt{3}}{2}\)
Giúp mình với ạ, mình cảm ơn trước.
1, Cho tam giác ABC vuông tại A,đường cao AH
a, Cho biêt AB=3cm,BC=5cm.Tính độ dài đoạn thẳng BH,CH,AH và AC
b,Cho biết AH=60cm,CH=144cm.Tính độ dài đoạn thẳng AB,AC,BC và BH
2, Cho tam giác ABC vuông tại A, đường cao AH
Cho biết \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\) và BC=122cm.Tính độ dài các đoạn thẳng BH,CH
cho tam giác ABC vuông tại A, đường cao AH,biết AB=24cm,\(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\).Tính AC,BC,AH
cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{3}{4}\)và AB+AC=21cm.
a) Tính AB, AC, BC
b) Tính AH, BH, CH
Cho tam giác ABC vuông tạ A, I là trung điểm của AB, kẻ IH vuông góc với BC. Chứng minh HC^2-HB^2=AC^2. Mong mn giúp mình có hình thì tốt