a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
c:
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)
=>DE=7,2cm
a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
c:
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)
=>DE=7,2cm
Cho tam giác ABC vuông tại A có AB=6 cm, AC=8 cm.Kẻ đường cao AH a) Chứng minh ABC ~ HBA từ đó suy ra AH.BC=AB.AC b)Gọi M,N lần lượt là hình chiếu của H trên AB,AC. Chứng minh AMH~ AHB c) Chứng minh AM.MB=MH^2 d) Chứng minh AMN~ACB e) Chứng minh S amn/S acb= AH^2/BC^2 Vẽ hình gt đầy đủ nhaa:3
cho tam giác ABC (AB<AC),phân giác AD(D thuộc BC).Gọi H,K lần lượt là hình chiếu của B,C trên AD.
a,CM:tam giác ABH đồng dạng voi tam giác ACK
b,CM: DH.DK=DB.DC
c,CM: AH.CD=AK.BD
d, CM: AH.DK=AK.DH
e. Biết AB=3cm,AC=6cm.Tia CK cat tia AB tại E, tia BH cat AC tại F.CM:SAEC=4SABF
Cho tam giác ABC vuông tại A có AH là đường cao.AB=15 AH=12
a) CM tam giác AHB đồng dạng tam giác CHA
b)Tính BH,HC,AC
c)Vẽ AM là tia phân giác góc BAC. Tính BM
d) Lấy E trên AC sao cho HE song song AB. Gọi N là trung điểm của AB,CN cắt nhau tại I. Chứng minh I là trung điểm của HE
Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9 cm
Gọi D và E là hình chiếu của H trên AB và AC
a) Tính độ dài DE
b) Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N. Chứng minh M là trung điểm của BF, N là trung điểm của CH
c) Tính diện tích tứ giác DENM
cho tam giác abc vuông tại a ab = 9cm ac=12cm tia phân giác của góc bac cắt bc tại d từ d kẻ vuông góc với ac đường thẳng này cắt ac tại e
a, chứng minh tam giác ced đồng dạng tam giác cab
b, tính cd:de
tính diện tích tam giác abd
Cho tam giác ABC vuông tại A có AB bằng 6 cm,AC bằng 8 cm.Vẽ đường cao AH.Chứng minh: a)tam giác HCA đồng dạng với tam giác ACB b)Tính BC,AH,CH,BH c)Vẽ đường phân giác AD của tam giác ABC Tính BD,CD d)Trên AH lấy điểm K sao cho AK bằng 3,6 cm .Từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứ giác BMNC đ) Trong tam giác ADB kẻ đường phân giác DE , trong tam giác ADC kẻ đường phân giác DF Cm:EA/EB.DB/DC.FC/FA=1(Hay EA.DB.FC=EB.DC.FA)
Cho DABC vuông tại A, AH là đường cao. Gọi D, E lần lượt là hình chiếu vuông góc của H trên AB, AC.
a) Chứng minh: ∆ABH ∆CAH.
b) Chứng minh: AD.AB = AE.AC = AH2
c) Chứng minh đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE.