Bài này không khó đâu bạn ạ
a) Xét ΔBAC có
E là trung điểm của AB(gt)
M là trung điểm của BC(gt)
⇒EM là đường trung bình của ΔBAC(đ/n đường trung bình của tam giác)
⇒EM//AC và \(EM=\frac{AC}{2}\)(định lí 2 về đường trung bình của tam giác)
Xét tứ giác EMAC có
EM//AC(cmt) và \(\widehat{EAC}=90\) độ(ΔBAC vuông tại A)
nên EMAC Là hình thang vuông(đ/n hình thang vuông)
b) Ta có : \(EM=\frac{AC}{2}\)(cmt)(1)
Do F và E đối xứng nhau qua M nên ta có:
M là trung điểm của EF
\(\Rightarrow EM=\frac{EF}{2}\)(2)
từ (1) và (2) suy ra AC=EF
Ta có: EM//AC(cmt)
mà \(F\in EM\)(GT)
nên EF//AC
Xét tứ giác AEFC có EF=AC(cmt) và EF//AC(cmt)
nên AEFC là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{EAC}=90\)độ(cmt)
nên AEFC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)