Ôn tập chương II - Đa giác. Diện tích đa giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuong Trinh Nguyen

Cho tam giác ABC vuông tại A có AH là đường cao. M là trung điểm của AB. Gọi D là điểm đối xứng của H qua M.
a) Chứng minh tứ giác AHBD là hình chữ nhật.
b) Trên đoạn HC lấy điểm E sao cho HB = HE. Chứng minh tứ giác AEHD là hình bình hành.
c) Gọi N là điểm đối xứng của A qua H. Chứng minh tứ giác AENB là hình thoi.
d) MN cắt BH tại K. Chứng minh BE = 3BK

Nguyễn Lê Phước Thịnh
1 tháng 11 2020 lúc 22:57

a) Xét tứ giác AHBD có

M là trung điểm của đường chéo AB(gt)

M là trung điểm của đường chéo HD(H và D đối xứng nhau qua M)

Do đó: AHBD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AHBD có \(\widehat{AHB}=90^0\)(AH⊥BC)

nên AHBD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: AHBD là hình chữ nhật(cmt)

nên AD//HB và AD=HB(hai cạnh đối trong hình chữ nhật AHBD)

mà E∈HB và HE=HB(gt)

nên AD//EH và AD=EH

Xét tứ giác AEHD có AD//EH(cmt) và AD=EH(cmt)

nên AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: EH=BH(gt)

mà E,H,B thẳng hàng

nên H là trung điểm của EB

Xét tứ giác AENB có

H là trung điểm của đường chéo EB(cmt)

H là trung điểm của đường chéo AN(A và N đối xứng nhau qua H)

Do đó: AENB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AENB có AN⊥EB(AH⊥BC, E∈BC, N∈AH)

nên AENB là hình thoi(Dấu hiệu nhận biết hình thoi)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
Lê Trần Bảo Trân
Xem chi tiết
Hoài An Nguyễn
Xem chi tiết
khánh Duy 7.3
Xem chi tiết
Cam 12345
Xem chi tiết
Ngọc
Xem chi tiết
Âu Minh Anh
Xem chi tiết
Nguyễn Đức Việt Anh
Xem chi tiết
Mai Anh Nguyễn
Xem chi tiết