Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .
1: Xét tứ giác BHCK có
D là trung điểm của BC
D là trung điểm của HK
Do đó: BHCK là hình bình hành
mà BC\(\perp\)HK
nên BHCK là hình thoi