a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đo: ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đo: ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
ho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. Vẽ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH.
c) Vẽ đường phân giác À của tam giác ABC (D thuộc BC). Tính BD, CD
d) Trên AH lấy điểm K sao cho AK = 3.6cm từ K kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N.Tính diện tích tứ giác BMNC
Cho tam giác ABC vuông tại A có AB=12cm, AC=16cm
Kẻ đường cao AH( H thuộcBC)
a) CM tam giác HBA đồng dạng vs ABC
b) tính BC,AH
c)Trong tam giác ABC kẻ phân giác AD, trong tam giác ADB kẻ phân giác DE trong tam giác ABC kẻ phân giác DF
Chứng minh:
\(\dfrac{EA}{EB}=\dfrac{DB}{DC}=\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Cho tam giác ABC vuông tại A, có AB = 12cm; AC = 16cm. Kẻ đường cao AH
a/ Chứng minh tam giác HBA ∼ ABC
b/ Tính độ dài đoạn thẳng BC, AH
c/ Trong tam giác ABC kẻ phân giác AD. Trong tam giác ADB kẻ phân giác BE, trong tam giác ADC kẻ phân giác DF. Chứng mình rằng \(\frac{EA}{EB}\) . \(\frac{DB}{DC}\) . \(\frac{FA}{FC}\) = 1
LÀM ƠN GIÚP MÌNH NHA MẤY BẠN!!!!!! CẢM ƠN TRƯỚC!!!
Cho ΔABC vuông tại A , có AB=12cm; AC=16cm. Kẻ đường cao AH (H∈ BC).
a) Chứng minh : ΔHBA đồng dạng ΔABC
b) Tính độ dài các đoạn thẳng BC, AH
c) Kẻ AD , DE , DF lần lượt là phân giác trong của ΔABC (D∈BC), ΔADB (E∈AB), ΔADC (F∈AC). Chứng minh rằng:\(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)