\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)
\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)
Cho tam giác ABC có 3 góc nhọn, \(AB=c,AC=b,BC=a\)
Chứng minh: \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
Cho tam giác ABC; AB = c; AC = b; BC = a; đường phân giác AD. Chứng minh:
1) \(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\)
2) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{S}< 2\)
3) \(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\ge6\)
4) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le\dfrac{1}{8}\)
5) \(\dfrac{1}{\sin^2\dfrac{A}{2}}+\dfrac{1}{\sin^2\dfrac{B}{2}}+\dfrac{1}{\sin^2\dfrac{C}{2}}\ge12\)
Cho tam giác ABC nhọn.Đặt BC=a,AC=b,AB=c.Cmr
\(\dfrac{a}{\sin A}\)=\(\dfrac{b}{\sin B}\)=\(\dfrac{c}{\sin C}\)
Cho tam giác có 3 cạnh có độ dài là a, b, c.
Chứng minh rằng: a) \(\sin\dfrac{a}{2}\le\dfrac{a}{\sqrt{bc}}\)
b) \(\sin\dfrac{a}{2}\cdot\sin\dfrac{b}{2}\cdot\sin\dfrac{c}{2}\le\dfrac{1}{8}\)
c) \(\sin\dfrac{a}{2}\cdot\sin\dfrac{b}{2}\cdot\sin\dfrac{c}{2}=\dfrac{1}{8}\) khi tam giác đã cho là tam giác đều.
Cho tam giác ABC có góc A nhọn. Chứng minh rằng SABC=\(\dfrac{1}{2}\) AB*AC*\(\sin A\)
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh a) tan ∝ với sin ∝/ cot ∝ b) cot ∝ với cos ∝ /sin ∝ c) tan ∝ × cot ∝ với 1
Cho tam giác ABC có BC=a , AB=c , AC=b
Tính a)sin\(\dfrac{A}{2}\)<\(\dfrac{a}{b+c}\)
b) sin \(\dfrac{a}{2}\).sin\(\dfrac{b}{2}\).sin\(\dfrac{c}{2}\) \(\dfrac{1}{8}\)
Cho tam giác ABC vuông tại A, có \(AB=\dfrac{1}{3}BC\). Hãy tính \(\sin C,\cos C,tgC,cotgC\) ?
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C