Kẻ BH vuông góc với AC, ta có:
\(BH=AB\sin A\)
Do đó: \(S_{ABC}=\dfrac{1}{2}AC.BH=\dfrac{1}{2}AC.AB.\sin A\)
\(\Rightarrowđpcm\)
Kẻ BH vuông góc với AC, ta có:
\(BH=AB\sin A\)
Do đó: \(S_{ABC}=\dfrac{1}{2}AC.BH=\dfrac{1}{2}AC.AB.\sin A\)
\(\Rightarrowđpcm\)
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
1)tam giác ABC có 3 góc nhọn . Chứng minh rằng
Sabc =1/2 b.c.sinA = 1/2 ab sin C= 1/2 ac sin B
2) tam giác ABC có 3 góc nhọn , đường cao AH =h, cạnh BC =a. Chứng minh rằng:
cotB+cotC=2 khi và chỉ khi a=2h
3)Cho tam giác có 3 góc nhọn. chứng minh rằng :
a/sinA = b/sinB =c/sinC
4)mình thay anpha là x nha cho dễ viết
Cho biết cosx =1/3. Tính giá trị biểu thức :
P = 3sin^2 +4cos^2x
Cho tam giác ABC vuông tại A. Chứng minh rằng :
\(\dfrac{AC}{AB}=\dfrac{\sin B}{\sin C}\)
Cho tam giác ABC có 3 góc nhọn, \(AB=c,AC=b,BC=a\)
Chứng minh: \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
cho tam giác ABC nhọn
BC=a, AC=b, AB=c
CM: sin A/2 ≤ a/2√(bc)
cho ΔABC nhọn, BC = a, AC = b, AB = c. chứng minh rằng
a, diện tích ΔABC = \(\frac{b.c.\sin A}{2}\)
b, \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị
của góc nhọn a
\(\left(\sqrt{\dfrac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\dfrac{1-\sin\alpha}{1+\sin\alpha}}\right)\dfrac{1}{\sqrt{1+\tan^2\alpha}}\)
Cho tam giác ABC có 3 góc nhọn và BC = a, AC = b, AB = c.
a) Chứng minh rằng \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
b) Gọi AD là phân giác của góc BAC (D thuộc BC) kẻ BI vuông góc AD (I thuộc AD). Chứng minh rằng \(\sin\frac{\widehat{BAC}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC; AB = c; AC = b; BC = a; đường phân giác AD. Chứng minh:
1) \(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\)
2) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{S}< 2\)
3) \(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\ge6\)
4) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le\dfrac{1}{8}\)
5) \(\dfrac{1}{\sin^2\dfrac{A}{2}}+\dfrac{1}{\sin^2\dfrac{B}{2}}+\dfrac{1}{\sin^2\dfrac{C}{2}}\ge12\)