a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay \(AC=\sqrt{16}=4cm\)
b) Xét ΔABC vuông tại A và ΔADB vuông tại A có
\(\widehat{ABC}=\widehat{ADB}\left(=90^0-\widehat{ABD}\right)\)
Do đó: ΔABC∼ΔADB(g-g)
\(\Rightarrow\frac{AB}{AD}=\frac{BC}{DB}=\frac{AC}{AB}\)(các cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow\frac{3}{AD}=\frac{5}{BD}=\frac{4}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{AD}=\frac{4}{3}\\\frac{5}{BD}=\frac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\frac{3\cdot3}{4}=\frac{9}{4}=2.25cm\\BD=\frac{5\cdot3}{4}=\frac{15}{4}=3.75cm\end{matrix}\right.\)
Vậy: AD=2.25cm; BD=3.75cm
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AE là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BE\cdot BC\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AF là đường cao ứng với cạnh huyền BD, ta được:
\(AB^2=BF\cdot BD\)(2)
Từ (1) và (2) suy ra \(BF\cdot BD=BE\cdot BC\)(đpcm)