Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Thị Ngọc Đan

Cho tam giác ABC vuông tại A, BC = 2AB. Gọi E là trung điểm BC, p/g góc ABC cắt AC tại D . CMR

a, DB là p/g góc BAC

b,BD = DC

c, Tính goc B , góc C của tam giác ABC

d, CMR BD là đường trung trực của AE

Nguyễn Lê Phước Thịnh
10 tháng 2 2020 lúc 20:52

a) Sửa đề: BD là tia phân giác của \(\widehat{ABE}\)

Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

mà E∈BC(do E là trung điểm của BC)

nên BD là tia phân giác của \(\widehat{ABE}\)(đpcm)

b) Ta có: BC=2AB(gt)

\(AB=\frac{BC}{2}\)(1)

Ta có: E là trung điểm của BC(gt)

\(BE=EC=\frac{BC}{2}\)(2)

Từ (1) và (2) suy ra AB=BE

Xét ΔABD và ΔEBD có

AB=BE(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(do BD là tia phân giác của \(\widehat{ABE}\))

BD là cạnh chung

Do đó: ΔABD=ΔEBD(c-g-c)

\(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

\(\widehat{BAD}=90^0\)(do \(\widehat{BAC}=90^0\),D∈AC)

nên \(\widehat{BED}=90^0\)

⇒DE⊥BC

Xét ΔBDC có

DE là đường cao ứng với cạnh BC(do DE⊥BC)

DE là đường trung tuyến ứng với cạnh BC(do E là trung điểm của BC)

Do đó: ΔBDC cân tại D(định lí tam giác cân)

⇒BD=DC

c) Ta có: BD là tia phân giác của \(\widehat{ABE}\)(cmt)

\(\widehat{ABD}=\widehat{EBD}\)(3)

Ta có: ΔBDC cân tại D(cmt)

\(\widehat{DBE}=\widehat{ECD}\)(4)

Từ (3) và (4) suy ra: \(\widehat{ABD}=\widehat{EBD}=\widehat{ECD}\)(5)

Ta có: ΔBAC vuông tại A(gt)

\(\widehat{ABC}+\widehat{BCA}=90^0\)(hai góc bù nhau)

hay \(\widehat{ABD}+\widehat{EBD}+\widehat{ECD}=90^0\)(6)

Từ (5) và (6) suy ra \(\widehat{ECD}=\widehat{ABD}=\widehat{EBD}=\frac{90^0}{3}=30^0\)

Ta có: \(\widehat{ECD}=30^0\)

mà B∈EC

và A∈DC

nên \(\widehat{BCA}=30^0\)

Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABC}=2\cdot\widehat{ABD}=2\cdot30^0=60^0\)

Vậy: \(\widehat{BCA}=30^0\); \(\widehat{ABC}=60^0\)

d)Ta có: BA=BE(cmt)

⇒B nằm trên đường trung trực của AE(tính chất đường trung trực của một đoạn thẳng)(7)

Ta có: ΔABD=ΔEBD(cmt)

⇒DA=DE(hai cạnh tương ứng)

⇒D nằm trên đường trung trực của AE(tính chất đường trung trực của một đoạn thẳng)(8)

Từ (7) và (8) suy ra BD là đường trung trực của AE(đpcm)

Khách vãng lai đã xóa
Lưu Thị Ngọc Đan
10 tháng 2 2020 lúc 21:54

DB là p/g của góc ADE ạ

Em hơi sai 1 chút :))

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đỗ Đức Phong
Xem chi tiết
Khánh Trang
Xem chi tiết
Hoàng Mai Lê
Xem chi tiết
Khánh Trang
Xem chi tiết
Lưu Thị Ngọc Đan
Xem chi tiết
Trần Thị Khiêm
Xem chi tiết
Khánh Trang
Xem chi tiết
Khánh Trang
Xem chi tiết
Nguyễn Bá Hải
Xem chi tiết