áp dụng định lý pitago vào tam giác vuông ABC:
\(AB^2\)+\(AC^2_{ }=BC^2\)
=>\(AB^2=BC^2-AC^2\)
<=>\(AB^2=6^2-4^2=20=>AB=\sqrt[]{20}\)
ÁP dụng định lý pitago vào tam giác vuông BCD
\(BC^2+DC^2=BD^2=>DC^2=BD^2-BC^2=9^2-6^2=45=>DC=\sqrt[]{45}\)
TA CÓ
\(\dfrac{AB}{CD}=\dfrac{\sqrt[]{20}}{\sqrt[]{45}}=\dfrac{2}{3}\) (1)
\(\dfrac{DC}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\) (2)
TỪ 1 và 2 => \(\Delta ABC\sim\Delta BCD\)
=>\(\widehat{DBC}=\widehat{ACB}\) mà 2 góc này ở vị trí so le trong => BD//AC
xin phép được trả lời ( bài làm khác xa 2 bạn ấy không hề copy )
Xét hai tam giác vuông ABC và CDB, ta có:
\(\widehat{BAC}=\widehat{DCB}=90^0\left(1\right)\)
Mà \(\dfrac{AB}{CB}=\dfrac{4}{6}=\dfrac{2}{3}\)
\(\dfrac{CB}{BD}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\Rightarrow\) \(\dfrac{AC}{CB}=\dfrac{CB}{BD}\left(2\right)\)
Từ (1) và (2) suy ra ∆ ABC đồng dạng ∆ CDB
\(\Rightarrow\) \(\widehat{ACB}=\widehat{CBD}\)
Vậy AC // BD (vì có các cặp góc ở vị trí so le trong bằng nhau)
Xét hai tam giác vuông ABC và CDB, ta có:
ˆBAC=ˆDCB=90∘BAC^=DCB^=90∘ (1)
Mà ACCB=46=23ACCB=46=23
CBBD=69=23CBBD=69=23
Suy ra: ACCB=CBBDACCB=CBBD (2)
Từ (1) và (2) suy ra ∆ ABC đồng dạng ∆ CDB (cạnh huyền và cạnh góc vuông tỉ lệ)
Suy ra: ˆACB=ˆCBDACB^=CBD^
Vậy AC // BD (vì có các cặp góc ở vị trí so le trong bằng nhau).