Cho tam giác ABC vuông tại A (AB<AC) , AH vuông góc với BC
a. Từ B kẻ đường thẳng vuông góc với trung tuyến AM cắt AH tại D , AM tại E , AC tại F.
CM : D là trung điểm của BF
BE.BF =BH.BC
b , Cho AB =120 cm ; AC =160 cm . Tính DE; AF .
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm
a) Tính BC,AH, góc B,góc C
b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC
c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho ∆abc vuông tại a(ab<ac).Vẽ đcao ah
a)Cm: ab^2\ac^2=bh\ch
b)từ b vẽ đường thẳng vg góc vs trung tuyến am cắt ah tại d, am tại e, ac tại f.Cmr: d là trung điểm của bf, be×bf=bh×bc.
c)Cho ab=120cm,ac=160cm. Tính de,af.
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
Cho tam giác ABC vuông tại A có AB=9cm AC=12cm BC=15cm. Kẻ đường cao AH và trung tuyến AO. Tia phân giác trong và ngoài của góc BAC lần lượt cắt BC tại D, E. Chứng minh \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E.
a)Chứng minh rằng: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 .
c) Chứng minh rằng: CE//AD
Cho tam giác ABC vuông ở A,AB=3cm,AC=4cm
a,Giải tam giác ABC
b,Gọi I là trung điểm của BC,vẽ AH vuông góc BC.Tính AH,AI
c,Qua A kẻ đường thẳng vuông góc với AI.Đường thẳng vuông góc với BC tại B cắt xy tại điểm M,đường thẳng vuông góc với BC tại C cắt xy tại điểm N.Chứng minh:MB.NC=BC mũ 2 trên 4
d,Gọi K là trung điểm của AH. CM 3 điểm B,K,N thẳng hàng