Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Bùi

 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lầnlượt ở E, F.a. Chứng minh AEHF là hình chữ nhật.b. Chứng minh BEFC nội tiếp và AE. AB = AF. ACc. Đường thẳng qua A vuông góc với EF cắt BC tại I. CMR: I là trung điểm của BC.d. Chứng minh nếu diện tích tam giác ABC bằng 2 lần diện tích của tứ giác AEHF thì tam giác ABCvuông cân.

Mình lm đc câu a,b r giúp mình câu c,d với 

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 20:05

a) Xét (O) có 

ΔAFH nội tiếp đường tròn(A,F,H\(\in\)(O))

AH là đường kính(gt)

Do đó: ΔAFH vuông tại F(Định lí)

Xét (O) có

ΔAEH nội tiếp đường tròn(A,E,H\(\in\)(O))

Do đó: ΔAEH vuông tại E(Định lí)

Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\left(\widehat{BAC}=90^0\right)\)

\(\widehat{AEH}=90^0\)(ΔAEH vuông tại E)

\(\widehat{AFH}=90^0\)(ΔAHF vuông tại F)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)


Các câu hỏi tương tự
Uyên Thu
Xem chi tiết
Đỗ Thị Thu Huyền
Xem chi tiết
07.9B Hà Minh Đức
Xem chi tiết
Chanhh
Xem chi tiết
Thư Minh
Xem chi tiết
nguyệt ánh
Xem chi tiết
mạnh anhđẹpzai
Xem chi tiết
Nameless
Xem chi tiết
Cao Cuong
Xem chi tiết