Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lầnlượt ở E, F.a. Chứng minh AEHF là hình chữ nhật.b. Chứng minh BEFC nội tiếp và AE. AB = AF. ACc. Đường thẳng qua A vuông góc với EF cắt BC tại I. CMR: I là trung điểm của BC.d. Chứng minh nếu diện tích tam giác ABC bằng 2 lần diện tích của tứ giác AEHF thì tam giác ABCvuông cân.
Mình lm đc câu a,b r giúp mình câu c,d với
a) Xét (O) có
ΔAFH nội tiếp đường tròn(A,F,H\(\in\)(O))
AH là đường kính(gt)
Do đó: ΔAFH vuông tại F(Định lí)
Xét (O) có
ΔAEH nội tiếp đường tròn(A,E,H\(\in\)(O))
Do đó: ΔAEH vuông tại E(Định lí)
Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\left(\widehat{BAC}=90^0\right)\)
\(\widehat{AEH}=90^0\)(ΔAEH vuông tại E)
\(\widehat{AFH}=90^0\)(ΔAHF vuông tại F)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)