cho tam giác abc vuông tại a trên cạnh bc lấy điểm e sao cho ce=ca vẽ đường thẳng e và vuông góc với bc, cắt ab tại d. gọi k là giao điểm của 2 đường thẳng ac và de. chứng minh tam giác adk=edb
cho tam giác ABC cân tại A (A<90 độ) . Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E
a) chứng minh tam giác ABD = tam giác ACE
b) trên tia đối của tia BD lấy điểm K sao cho BD = DK . Chứng minh tam giác BCK là tam giác cân
c) chứng minh ED song song với BC từ đó suy ra góc EDB = góc DKC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A ?
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D, E (D nằm giữa B và E) sao cho BD=CE. Vẽ DM\(\perp\)AB tại M, EN\(\perp\)AC tại N. Gọi K là giao điểm của MD và NE. Chứng minh rằng;
a) △MBD=△NCE; b)△MAK=△NAK
Bài 1. Cho ABC cân tại A. Kẻ BD AC, CE AB (D AC; E AB). Gọi I là giao điểm BD và CE. Chứng minh rằng:
a) BE = CD
b) AI là phân giác BAC
c) Vẽ AK BC tại K. Chứng minh rằng AK, BD, CE cùng đi qua một điểm.
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.