AB^2+CD^2
=AH^2+BH^2+CH^2+DH^2
=AD^2+BC^2
AB^2+CD^2
=AH^2+BH^2+CH^2+DH^2
=AD^2+BC^2
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CBlấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. 2 đường thẳng hb và kc cắt nhau tại o.Chứng minh a, tam giác Abd=tam giác ace; b,tam giác ade cân; c,tam giác dhb= tam giác ekc;d.tam giác boc cân;e.oa là tia phân giác của góc boc
Bài 12: Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi H, K lần lượt là trung điểm của AD, BC. Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc với AB tại E.
a) Chứng minh : IB = IC; IA = ID.
b) Chứng minh: và AI là phân giác của góc BAC.
c) Chứng minh: BE = HC và AI là đường trung trực của đoạn thẳng EH.
d) Từ C kẻ đường thẳng song song với AB, cắt đường thẳng EH tại F. Chứng minh: và E, K, F thẳng hàng.
Cho tam giác ABC cân tại A vẽ AH vuông góc với BC ( H thuộc BC)
a) Chứng minh tam giác AHB bằng tam giác AHC?
b) Trên tia đối tia HA lấy điểm D sao cho HA=HD, chứng minh tam giác ACD cân tại C?
c) Chứng minh: HA < 1/2( AC + CD)
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK song song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD.
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK sonh song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
cho tam giác abc cân tại a trên tia đốicủa tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad,ck vuông góc với ae[h thuộc ad,k thuộc ae].2 đường thẳng hb và kc cắt nhau tại o.CM:a,tam giác abd=tam giác ace;b,tam giác ade cân;c,tam giác dhb=tam giác ekc;d,tam giác boc cân;e,oa là tia phân giác của góc boc
9. Cho tam giác ABC nhọn, AB < AC. M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MB =
MD.
a) Chứng minh rằng ΔBMC = ΔDMA .
b) Kẻ AH ⊥ BC,H ∈BC . Chứng minh AH ⊥ AD .
c) Chứng minh A
!BC = CD!A
d) Kẻ CK ⊥ AD,K ∈AD . Chứng minh BH = DK và H, M, K thẳng hàng.
Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Bài 4: Cho△ABC vuông tại A (AB< AC) ,BE là tia phân giác góc ABC (E ∈AC) . Trên cạnh BC lấy D sao cho AB = BD
1) Chứng minh : △ABE = △DBE
2) Chứng minh : ED ⊥BC
3) Qua A vẽ đường thẳng vuông góc với BC tại H . Chứng minh :AD là tia phân giác góc HAC.