Cho tam giác ABC có M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD a) Chứng minh rằng A AMD= ACMB b) Chứng minh rằng AB // CD c) Vẽ tia CN 1 AD (N e AD) và API BC (Pe BC). Chứng minh rằng ND = BP d) Chứng minh rằng N, M, P thẳng hàng
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.
Ai giúp tớ câu 3,4 với!
Cho tam giác ABC có A < 90 độ và AB < BC. Gọi M là trung điểm của AC, trên tia đối của tia MBlấy điểm D sao cho MD = MB.1) Chứng minh ΔABM = ΔCDM từ đó chứng minh AB=CD và AB // DC.2) Chứng minh : ABC = ADC.3) Kẻ AH ⊥ BD tại H, CK ⊥ BD tại K. Chứng minh AK = CH.4) Nếu AC = 2AB = 8 cm và BAC = 60 độ . Tính HK.
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC
a) Chứng minh: △AHB = △AHC và AH vuông góc với BC.
b) Kẻ HE ⊥ AB(E ϵ AB), HF ⊥ AC(F ϵ AC). Chứng minh △HEB = △HFC.
c) Trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Chứng minh rằng FH ⊥ BD
Cho tam giác ABC.Gọi M là trung điểm AC.Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) Chứng minh: Tam giác AMD=CMB
b)Chứng minh: AD // BC
c) Kẻ AH vuông góc BC( H thuộc BC) Kẻ CK vuông góc AD( K thuộcAD).Chứng minh tam giác AHC=tam giác CKA
d)Chứng minh: Tam giác AMK=tam giác CMH
e) Chứng minh HK=2AM
Bài 2. Cho D ABC cân tại A. Phân giác AM (M Î BC), Vẽ BH ^ AC (H Î AC), CK ^ AB (K Î AB).
a. Chứng minh rằng D AMB = D AMC.
b. Chứng minh rằng BH = CK.
Bài 3. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:
a) AE = BD;
b) AF // BC.
c) Ba điểm A, E, F thẳng hàng.
Bài 4. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh rằng AB+AC=BC+DE.
Bài 4. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm MD = MB Chứng minh rằng: a) AB = CD và AC vuông góc với CD b) AD = BC và AD //BC c)góc ABM > góc ACM
cho tam giác ABC (AB<AC), tia phân giác AD (D thuộc BC). Vẽ BE vuông AD (E thuộc AC) và H là giao điểm của AD và BE.
a, chứng minh ΔABH = ΔAEH
b, chứng minh tam giác BDE là tam giác cân
c, Trên tia đối của DE lấy K sao cho DC = DK. Chứng minh góc KBD = góc CED và A, B, K thẳng hàng
d, Chứng minh BE // KC