cho tam giác ABC (AB<AC), tia phân giác AD (D thuộc BC). Vẽ BE vuông AD (E thuộc AC) và H là giao điểm của AD và BE.
a, chứng minh ΔABH = ΔAEH
b, chứng minh tam giác BDE là tam giác cân
c, Trên tia đối của DE lấy K sao cho DC = DK. Chứng minh góc KBD = góc CED và A, B, K thẳng hàng
d, Chứng minh BE // KC
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
\(\widehat{BAH}=\widehat{EAH}\)
Do đó: ΔAHB=ΔAHE
b:
Ta có: ΔAHB=ΔAHE
=>AB=AE
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
=>ΔDBE cân tại D
c: Xét ΔBDK và ΔEDC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
DK=DC
Do đó: ΔBDK=ΔEDC
=>\(\widehat{KBD}=\widehat{CED}\)
Ta có: ΔBAD=ΔEAD
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{KBD}\)
\(=\widehat{AED}+\widehat{CED}\)
\(=180^0\)
=>A,B,K thẳng hàng
d: Ta có: ΔDBK=ΔDEC
=>BK=EC
Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)
nên BE//KC