cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Bài 13: Cho tam giác ABC vuông tại A, AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF vuông góc với AH tại F.
a) Chứng minh: ED // FH
b) Chứng minh: , từ đó suy ra EF = DH.
c) Chứng minh: . Từ đó chứng minh: .
d) Chứng minh AB = AE và tính số đo các góc của tam giác ABE.
Cho Tam giác ABC vuông tại A.Trên cạnh BC lấy điểm E sao cho BE = BA. Qua E vẽ đường thẳng vuông góc với BC , cắt AC tại D và cắt tia BA tại K
a)Chứng minh ∆ABD = ∆EBD rồi suy ra BD là tia phân giác của góc ABC
b) Chứng minh ∆BEK =∆ BAC
c) Chứng minh AE // KC
d) Vẽ DI vuông góc với KC tại I.Chứng minh ba điểm B , D , I thẳng hàng
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
Cho ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho BD = BA. Gọi M là trung điểm
AD. a/Chứng minh . b/Vẽ tia BM cắt AC tại E. Chứng minh ED BD ⊥
c/ Trên cạnh MD lấy điểm I sao cho MI = ID. Qua I vẽ đường thẳng vuông góc với MD cắt cạnh ED tại K. Tư M vẽ
đường thẳng vuông góc với cạnh AB tại H. Chứng minh 3 điểm M; H; K thẳng hàng