Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lilith.

Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.

Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 20:26

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔBEM và ΔDEC có

EB=ED
\(\widehat{BEM}=\widehat{DEC}\)

EM=EC

Do đó: ΔBEM=ΔDEC

=>\(\widehat{EBM}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

nên \(\widehat{ABE}+\widehat{MBE}=180^0\)

=>A,B,M thẳng hàng

Ta có: ΔEBM=ΔEDC

=>BM=DC

Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)

nên BD//MC


Các câu hỏi tương tự
lilith.
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Hoàng Giang
Xem chi tiết
lilith.
Xem chi tiết
Nguyễn Nhân Kiệt
Xem chi tiết
Phạm Thu Hương
Xem chi tiết
Hoàng Giang
Xem chi tiết
Hoàng Giang
Xem chi tiết