cho tam giác ABC nhọn, đường trung tuyến BM và CN vuông góc cắt nhau tại G
CMR: Cot B + Cot C \(\ge\)\(\dfrac{2}{3}\)
Cho tam giác ABC, trung tuyến BM và CN vuông góc với nhau, các góc B góc C nhọn. Chứng minh Cot B + Cot C >=2/3
Cho tam giác ABC có đường trung tuyến BM và CN vuông góc với nhau . Chứng minh: \(\cot B+\cot C\ge\dfrac{2}{3}\)
Mọi người giúp tớ chứng mình bài này với . Cảm ơn trước ạ. ❤
Cho tam giác ABC có ba góc nhọn, kẻ đường cao AH.
Chứng minh: \(AH=\dfrac{BC}{\cot B + \cot C}\)
Bài 4. Cho tam giác ABC có góc A bằng 60o , đường cao BM và CN cắt nhau tại H. Nối AH cắt BC tại K. BiếtAC = 8cm .
a) Tính AN, NC và số đo các góc ABM và BHC.
b) Chứng minh rằng AK ^ BC, MBC = CAK .
c) Gọi I là trung điểm của BC, Chứng minh rằng tam giác MIN đều.
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh a) tan ∝ với sin ∝/ cot ∝ b) cot ∝ với cos ∝ /sin ∝ c) tan ∝ × cot ∝ với 1
cho tam giác abc vuông tại a. trung tuyến am, đường cao ah. biết góc abc = 15 độ. cmr: bc^2 = 4ab.ac
1/ Cho tam giác ABC, góc A = 60 độ, vẽ các đường cao BD và CE. Chứng minh rằng DE = 1/2 BC
2/ Cho tam giác nhọn ABC có diện tích S, đường cao AH = h, biết S=h.h; Chứng minh rằng cot B + cot C = 2
cho tam giác ABC vẽ trung tuyến AM. CMR : Nếu Cot B=3 Cot C thì AM=AC