Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R), các đường cao BE, CF (E thuộc AC, F thuộc AB). b) Đường thẳng EF cắt đường tròn (O; R) tại M và N (F nằm giữa M và E). Chứng minh AM = AN.
giải bài này giúp mình với:
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O, AB<AC . các tiếp tuyến tại B và C của đg tròn (O) cắt tại N. vẽ AM//BC. dg thẳng MN cắt tâm O tại điểm thứ 2 là P. Biết 1/OB2+1/NC2=1/6. TÍNH BC
Cho (O;R) và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN với (O) (M,N tiếp điểm). Trên nửa mặt phẳng bờ AO chứa N vẽ cát tuyến ABC của (O) sao cho AB < AC, gọi I là trung điểm của BC, MN cắt AC tại K.
a) C/m AMOI là tứ giác nội tiếp.
b) C/m OA vuông góc với MN tại H và AK.AI=AM2
c) AO cắt (O) tại 2 điểm P,Q ( AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H và vuông góc với MD cắt MP tại E. C/m △MHE ∼ △QDM và P là trung điểm của ME.
Giúp mình với ạ, Cảm ơn!
cho đường tròn (O) đường kính AB=2R.Lấy điểm M thuộc đường tròn (O) (M khác A và B).Qua O kẻ đường thẳng vuông góc với AM cắt tiếp tuyến của (O) (tiếp điểm A) tại C a) c/m:tam giác AOC=tam giác MOC và MC là tiếp tuyến (O) b) Qua B kẻ tiếp tuyến với (O) cắt CM lại D. c/m tam giác COD vuông và AC.BD=R^2 c) kẻ MH vuông góc AB.C/m rằng ba đường AD,BC,MH đồng quy
Cho tam giác nhọn \(ABC\) (AB<AC) nội tiếp đường tròn (O), trực tâm H, đường cao AE. Gọi M là trung điểm của BC. Đường thẳng vuông góc với MH tại H cắt AB và AC theo thứ tự tại I và K. J là một điểm thuộc đoạn AE sao cho góc BJC=90.
a) CMR: HI=HK
b) CMR: dt(\(BJC \))^2 = dt(ABC).dt(HBC)
c) Gọi Q là một điểm trên (O) sao cho góc AQH=90. CMR 3 điểm Q,H,M thẳng hàng
Cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B, C là các tiếp điểm). AO cắt BC tại D
a/ Chứng minh tam giác ABC cân tại A và AO là đường trung trực của BC
b/ Vẽ đường kính BE, AE cắt đường tròn (O) tại F. Gọi G là trung điểm của EF, đường thẳng OG cắt đường thẳng BC tại H. Chứng minh tam giác AGO đồng dạng tam giác HDO
c/ Chứng minh EH là tiếp tuyến của đường tròn (O)
Cho nửa đường tròn (o), đường kính AB. Hai tiếp tuyến Ax, By trên cùng 1 mặt phẳng bờ AB chứa nửa đường tròn (o). Tiếp tuyến tại điẻm M của nửa đường tròncắt Ax tại C và By tại D
a) COD là tam giác gì?
b) C/m: CD=AB+BD
c) AM và BM cắt OC và OD lần lượt tại E và F. Tứ giác OEMF là hình gì?
d) Gọi I là giao điểm 2 đường chéo OM và EF của tứ giác OEMF. Khi M thay đổi trên nửa đường tròn (o) thì điểm I chuyển động trên đường nào? Vì sao?
e) Xác định vị trí của M để tứ giác OEMF là hình vuông? Tính diện tích của hình vuông này. Cho biết AB=6cm
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S