Cho tam giác ABC,trung tuyến AM và trọng tâm G.Trên tia đối của tia BC lấy điểm E,trên tia đối của tia BC lấy điểm E,trên tia đối của tia CB lấy điểm F sao cho BE=CF
a)chứng minh G là trọng tâm tam giác AEF
b)Gọi N là trung điểm của AF.chứng minh ba điểm E,G,N thẳng hàng
c)Gọi H là trung điểm của G,A,I là trung điểm của GE.Chứng minh IH song song với MN và IH=MN
cho tam giác ABC cân tại A gọi M là trung điểm của BC. Trên Tia đối MA lấy điểm N sao cho MA=MN chứng minh AB//NC chứng minh tam giác ABN cân
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối tia IB lấy điểm D sao cho ID=IB.
a) Chứng minh: tam giác IAB= tam giác ICD
b) Gọi M là trung điểm BC. AM cắt BI tại G
Chứng minh: BG= 2/3 ID
c) Gọi N là trung điểm CD. AN cắt DI tại K. Chứng minh: BG=GK=KD
Cho tam giác ABC nhọn. Đường cao AH. Qua H kẻ Hx vuông góc với AB tại I. Trên tia đối của IH lấy điểm D sao cho IH = ID. Từ H kẻ HK vuông góc HC tại K. Trên tia đối của tia AH lấy điểm E sao cho KH = KE. a) Chứng minh góc DAE = 2 lần góc BAC. b) Nối DE cắt AB và AC theo thứ tự tại M và N. c) Chứng minh ba đường thẳng AH, CM, BH đồng quy tại 1 điểm.
Cho tam giác ABC cân tại A hạ. Từ A hạ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Trên tia đối của tia CB lấy điểm N sao cho CN=BC. Tia AC cắt MN tại I. Trên tia HI lấy điểm O sao cho IH=IO. a) CM: C là trọng tâm của tam giác AMN. b) CM: NO=AH. c) CM: HO=MN. d) D là trung điểm của AN.CM: M, C, D thẳng hàng
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Bài 5: Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN = EN. Chứng minh:
a)△ NAB =△ NEM
b) MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh AM là trung điểm của BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI